Presenting LightBulb Framework at BlackHat Europe 2016
In this presentation we introduce a novel, efficient, approach for bypassing WAFs using automata learning algorithms.
We show that automata learning algorithms can be used to obtain useful models of WAFs. Given such a model, we show how to construct, either manually or automatically, a grammar describing the set of possible attacks which are then tested against the obtained model for the firewall. Moreover, if our system fails to find an attack, a regular expression model of the firewall is generated for further analysis. Using this technique we found over 10 previously unknown vulnerabilities in popular WAFs such as Mod-Security, PHPIDS and Expose allowing us to mount SQL Injection and XSS attacks bypassing the firewalls. Finally, we present LightBulb, an open source python framework for auditing web applications firewalls using the techniques described above. In the release we include the set of grammars used to find the vulnerabilities presented.